Characterizing and Detecting Hateful Users on Twitter
نویسندگان
چکیده
Most current approaches to characterize and detect hate speech focus on content posted in Online Social Networks. They face shortcomings to collect and annotate hateful speech due to the incompleteness and noisiness of OSN text and the subjectivity of hate speech. These limitations are often aided with constraints that oversimplify the problem, such as considering only tweets containing hate-related words. In this work we partially address these issues by shifting the focus towards users. We develop and employ a robust methodology to collect and annotate hateful users which does not depend directly on lexicon and where the users are annotated given their entire profile. This results in a sample of Twitter’s retweet graph containing 100, 386 users, out of which 4, 972 were annotated. We also collect the users who were banned in the three months that followed the data collection. We show that hateful users differ from normal ones in terms of their activity patterns, word usage and as well as network structure. We obtain similar results comparing the neighbors of hateful vs. neighbors of normal users and also suspended users vs. active users, increasing the robustness of our analysis. We observe that hateful users are densely connected, and thus formulate the hate speech detection problem as a task of semi-supervised learning over a graph, exploiting the network of connections on Twitter. We find that a node embedding algorithm, which exploits the graph structure, outperforms content-based approaches for the detection of both hateful (95% AUC vs 88% AUC) and suspended users (93% AUC vs 88% AUC). Altogether, we present a user-centric view of hate speech, paving the way for better detection and understanding of this relevant and challenging issue.
منابع مشابه
"Like Sheep Among Wolves": Characterizing Hateful Users on Twitter
Hateful speech in Online Social Networks (OSNs) is a key challenge for companies and governments, as it impacts users and advertisers, and as several countries have strict legislation against the practice. This has motivated work on detecting and characterizing the phenomenon in tweets, social media posts and comments. However, these approaches face several shortcomings due to the noisiness of ...
متن کاملA Web of Hate: Tackling Hateful Speech in Online Social Spaces
Online social platforms are beset with hateful speech content that expresses hatred for a person or group of people. Such content can frighten, intimidate, or silence platform users, and some of it can inspire other users to commit violence. Despite widespread recognition of the problems posed by such content, reliable solutions even for detecting hateful speech are lacking. In the present work...
متن کاملAnalytics for Cybersecurity and Online Safety 23 May 2016
Online social platforms are beset with hateful speech content that expresses hatred for a person or group of people. Such content can frighten, intimidate, or silence platform users, and some of it can inspire other users to commit violence. Despite widespread recognition of the problems posed by such content, reliable solutions even for detecting hateful speech are lacking. In the present work...
متن کاملOrganizations Are Users Too: Characterizing and Detecting the Presence of Organizations on Twitter
Much work on the demographics of social media platforms such as Twitter has focused on the properties of individuals, such as gender or age. However, because credible detectors for organization accounts do not exist, these and future largescale studies of human behavior on social media can be contaminated by the presence of accounts belonging to organizations. We analyze organizations on Twitte...
متن کاملDetection of Twitter Users' Attitudes about Flu Vaccine based on the Content and Sentiment Analysis of the Sent Tweets
Introduction: The influenza vaccine is one of the controversial challenges in today's societies. Considering the importance of using the flu vaccine in preventing the spread of influenza virus, the Twitter network, as a rich source of data, provides suitable conditions for research in this field to examine the attitudes of different people about this vaccine. The results in one hand will help h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018